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Abstract: This paper employs multi-valued logic in the reliability analysis of a multi-state system. The paper 

expresses each instance of the multi-valued output of the system as an explicit function of the multi-valued 

inputs of the system. The various expressions are then compiled in a Multi-Valued Karnaugh Map (MVKM) 

which serves as the natural map for a multi-state system. The paper demonstrates its proposed technique in 

terms of a standard commodity-supply system, and obtains numerical results that exactly agree with those 

obtained by earlier methods. As a bonus, the paper utilizes the MVKM representation of the solved coherent 

multi-state system to illustrate its features of causality, monotonicity and relevancy. 
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I. Introduction  
We propose a novel method for the reliability analysis of a multi-state system via multi-valued logic. 

This method seems to be the most natural and direct way to achieve this purpose, since it seeks to express each 

instance of the multi-state system as an explicit function of the multi-valued inputs of the system. The ultimate 

output of the method is an aggregated or collective tabulation of the resulting functions. This tabulation is 

conveniently achieved as a Multi-Valued Karnaugh Map (MVKM), which serves as a natural, unique, and 

complete representation of the multi-state system. 

The paper presents a detailed analysis of a standard commodity supply multi-state system, and provides 

a complete solution for it in MVKM form. This manually-obtained solution agrees exactly with other solutions 

obtained earlier via automated techniques [1, 2] or via different manual techniques [3, 4].To construct our 

MVKM complete solutions, we could have followed (among several possibilities) either of the following two 

options. 

Option 1 is to use exhaustive enumeration, i.e., to decide the entry (output value) for each of the 

individual MVKM cells. This is a very time-consuming brute-force option that does not benefit of possible 

similarities, shortcuts and/or aggregations. However, it decomposes the initial problem into individual problems, 

in which a verbal statement of the problem together with full specification of the individual inputs lead 

immediately to a selection of the output value from amongst its possible multitude of values. 

Option 2 is to use “binary” entities to relate each of the instances of the output to multi-valued inputs. 

These binary inputs could be either algebraic quantities or Conventional Karnaugh Maps (CKMs) [5-13].We use 

the choice of algebraic quantities herein and delegate the choice of CKMs to another forthcoming paper [14]. 

The organization of the remainder of this paper is as follows. Section II gives a verbal and a 

mathematical description of the problem to be solved. Section III presents the mathematical derivation for the 

multi-valued output. Section IV represents our findings in the form of a Multi-Valued Karnaugh Map (MVKM), 

while Section V compares our results to earlier work. Section VI concludes the paper.   

  

II. Verbal and Mathematical Problem Description 
Our problem is to analyze a commodity-supply system that was introduced in [1] and is shown in Fig. 

1. The system has four pipelines that transmit a certain commodity (such as oil) from a single source point to 

three sink points (called stations). The status of pipeline i (1 ≤ 𝑖 ≤ 4) is determined by a four-valued input 

variable Xi, which is described in Table 1(a). Likewise, the system status is determined by a four-valued output 

variables S described in Table 1(b). The indicator for meeting the demand of station i (called the success of 

station i) is given as a ki-out-of-4: G system as shown in Table 2. The notation Sy(A, X) used in Table 2 denotes 

a symmetric switching function (SSF) of a characteristic set A and n arguments X where the number n of 

arguments is an implicit input of the function [7, 15, 16].  The four instances of the system variable S are related 

to station successes by [3]: 
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S{0}  =   S̅1                                                                    (1a) 

S{1}  =     S1S̅2                                                              (1b) 

S{2}  =    S1 S2S̅3                                                           (1c) 

S{3}  =   S1 S2 S3                                                           (1d) 

III. System Analysis 
We start the system analysis by encoding each of the multi-valued variables Xi ( 1 ≤ 𝑖 ≤ 4 ) by two binary 

variables Zi1 and  Zi2  as follows  

 

Xi{0} = Z̅𝑖1Z̅𝑖2                                                           (2a) 

Xi{1} = Z̅𝑖1Zi2                                                            (2b) 

Xi{2} =  Zi1Z̅𝑖2                                                           (2c) 

Xi{3} =  Zi1 Zi2                                                           (2d) 

 

Hence, the corresponding inputs needed in Table 2 are encoded as  

 

Xi {1} ∨Xi {2} ∨Xi {3} =  Zi1 ∨  Zi2                                                (3a) 

 

Xi {2} ∨Xi {3} =  Zi1                                                        (3b) 

 

Xi {3} =   Zi1  Zi2                                                 (3c) 

 

Now, the successes of the three stations are given by 

 

S1= Sy({4}; Z11∨Z12, Z21∨Z22, Z31∨Z32, Z41∨Z42 ) 

 

=  ( Z11∨Z12 ) ( Z21∨Z22 ) ( Z31∨Z32 ) ( Z41∨Z42 )                                           (4a) 

 

S2   =  Sy({ 2, 3, 4}; Z11,Z21, Z31, Z41)      

 

=  Z11Z21∨ Z11Z31∨ Z11Z41∨ Z21Z31∨ Z21Z41∨ Z31                                (4b) 

 

S3  =  Sy ({ 3, 4};  Z11Z12, Z21Z22, Z31Z32, Z41  Z42 ) 

 

=  Z11Z12 Z21  Z22 Z31Z32∨ Z11Z12 Z21  Z22 Z41Z42 

 

∨   Z11Z12 Z31  Z32 Z41Z42  ∨ Z21Z22 Z31  Z32 Z41Z42                                             (4c) 

 

The instances of S can now be obtained by combining equations (1) and (4). In the following, we state the 

values of these instances and their expectations 

 

S{0} =  S̅1=  Z̅11Z̅12 ∨ Z̅21Z̅22 ∨ Z̅31Z̅32 ∨ Z̅41Z̅42 

 

= X1{0}∨X2{0}∨X3{0}∨X4{0}                                                               (5) 

 

E{S{0}} = 1— E{ X̅1{0}} E{X̅2{0}} E{ X̅3{0}} E{ X̅4{0}}                                      (6) 

Using properties of symmetric switching functions (SSFs) [7, 15, 16],  we complement the expression (4b) for 

S2 to obtain  
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S̅2 =  Sy({ 0, 1};  Z11 ,Z21, Z31, Z41) 

 

=  Sy({ 3, 4};   Z̅11, Z̅21,Z̅31, Z̅41) 

 

=   Z̅11Z̅21Z̅31 ∨ Z̅11Z̅21Z̅41 

∨ Z̅11Z̅31Z̅41 ∨ Z̅21Z̅31Z̅41                                                                            (7) 

 

Combining  (4a) and (7), we express the next instance of the four-valued output as  

 

S{1} = S1S̅2 = ( Z11∨Z12 ) ( Z21∨Z22 ) ( Z31∨Z32 ) ( Z41∨Z42 ) 

 

( Z̅11Z̅21Z̅31 ∨  Z̅11Z̅21Z̅41 ∨  Z̅11Z̅31Z̅41 ∨  Z̅21Z̅31Z̅41) 

 

= Z̅11  Z12 Z̅21 Z22Z̅31Z32(Z41Z42∨Z41Z̅42 ∨ Z̅41Z42 ) 

 

∨  Z̅11  Z12 Z̅21 Z22Z̅41Z42( Z31Z32∨Z31Z̅32 ∨ Z̅31Z32 ) 

 

∨  Z̅11  Z12 Z̅31 Z32Z̅41Z42( Z21Z22∨Z21Z̅22 ∨ Z̅21Z22 ) 

 

∨  Z̅21  Z22Z̅31 Z32Z̅41Z42( Z11Z12∨Z11Z̅12 ∨  Z̅11Z12 ) 

 

 

= Z̅11  Z12 Z̅21 Z22Z̅31Z32( Z41Z42∨Z41Z̅42  ) 

 

∨  Z̅11  Z12 Z̅21 Z22Z̅41Z42( Z31Z32∨Z31Z̅32  ) 

 

∨  Z̅11  Z12 Z̅31 Z32Z̅41Z42( Z21Z22∨Z21Z̅22  ) 

 

∨  Z̅21  Z22 Z̅31 Z32Z̅41Z42( Z11Z12∨Z11Z̅12  ) 

 

∨  Z̅11 Z12 Z̅21 Z22Z̅31Z32Z̅41Z42                                                                       (8) 

 

In equation (8), we note that for  (1 ≤ 𝑖 ≤ 4 ) a certain literal of the variable Zi1 (either Z̅𝑖1 or Zi1) is always 

paired (ANDed) with a literal of the variable Zi2  (either Z̅𝑖2 or Zi2). Therefore, we can decode such pairs of 

literals into the corresponding instance of multi-valued variable Xi using (2), namely  

 

S{1} =   X1{1} X2 {1} X3 {1} (X4{3}∨X4{2}) 

 

∨  X1{1} X2 {1} X4 {1} (X3{3}∨ X3{2}) 

∨  X1{1} X3 {1} X4 {1} (X2{3}∨ X2{2}) 

∨  X2{1} X3{1} X4 {1} (X1{3} ∨X1{2}) 

∨  X1{1} X2 {1} X3 {1} X4{1}                                                                    (9) 

 

Equation (9) is a probability-ready expression [17-23] in which ANDed entities are independent and ORed 

entities are disjoint, and hence any of its entities are replaced by its expectation, while logical multiplication 

(ANDing) and logical addition (ORing) are replaced by their arithmetic counterparts, namely 

 

E{S{1}} =   E{X1{1}}  E{X2 {1}}  E{X3 {1}} ( E{X4{3}} + E{X4{2}}) 

 

+   E {X1{1}} E{X2 {1}}  E{X4 {1}} (E{X3{3}}+  E {X3{2}}) 

+   E{X1{1}} E{X3 {1}}  E{X4 {1}} (E{X2{3}} + E{X2{2}}) 
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+  E{X2{1}} E{X3{1}}  E{X4 {1}} (E{X1{3}} +E{X1{2}}) 

       +  E{X1{1}} E{X2 {1}}  E{X3 {1}} E{X4{1}}                                     (10) 

 

Next, we prove that  

 

S1S3  ≤  S1S2 ,                                                                         (11) 

 

which is a useful result, since it simplifies our expression for S{3} to  

 

S{3} = S1 S2 S3 =  S1 S3                                                              (12) 

 

First, we compute  S1 S3   as 

 

S1 S3  =  ( Z11∨Z12 ) ( Z21∨Z22 ) ( Z31∨Z32 ) ( Z41∨Z42 ) 

 

( Z11Z12 Z21Z22Z31Z32 

 

∨ Z11Z12 Z21Z22Z41Z42 

 

∨ Z11Z12 Z31Z32Z41Z42 

 

∨Z21Z22 Z31Z32Z41Z42) 

 

= Z11Z12 Z21Z22 Z31Z32  (Z41∨Z42 ) 

 

∨ Z11Z12 Z21Z22Z41Z42 (Z31∨Z32) 

 

∨ Z11Z12Z31Z32Z41Z42  (Z21∨Z22 ) 

 

∨ Z21  Z22 Z31 Z32Z41  Z42  (Z11∨Z12 ) 

 

=  Z11Z12  Z21Z22 Z31Z32  Z41∨Z42 

 

∨ Z11Z12 Z21  Z22Z31  Z32  (Z41Z̅42 ∨  Z̅41Z42 ) 

 

∨ Z11Z12 Z21Z22Z41Z42  (Z31Z̅32 ∨  Z̅31Z32 ) 

 

∨ Z11Z12  Z31 Z32 Z41Z42   (Z21Z̅22 ∨  Z̅21Z22 ) 

 

∨ Z21Z22 Z31  Z32Z41Z42 (Z11Z̅12 ∨ Z̅11Z12 )                                                   (13) 

 

 

Equation (13) shows that S1S3 is a disjunction of nine minterms over the eight variables   ( Zi1 ,  Zi2 ) ,  1 ≤ 𝑖 ≤
4 . 
 

Now, we compute  S1S2as  

 

S1 S2 = ( Z11∨Z12 ) ( Z21∨Z22 ) ( Z31∨Z32 ) ( Z41∨Z42 ) 

 

( Z11Z21∨ Z11Z31∨ Z11Z41∨ Z21Z31∨ Z21Z41∨ Z31Z41 )                                      (14) 

 

It is clear that each of the minterms in (13) subsumes some term in S1S2 (when the latter is expanded in SOP 

form). Hence, Equation (11) follows. We note that pairing of literals observed in (8) also occurs in (13), and 

hence we can enforce a similar decoding using (2) to obtain 

 

S{3} = S1 S3 =X1{3} X2 {3} X3 {3}X4{3} 
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∨  X1{3} X2 {3} X3{3} (X4{2}∨ X4{1}) 

∨  X1{3} X2 {3} X4{3} (X3{2} ∨  X3{1}) 

∨  X1{3} X3{3} X4{3} (X2{2} ∨ X2{1})   ∨   X2{3} X3{3} X4{3} (X1{2} ∨X1{1})             (15) 

 

Now, Equation (15) is in PRE form, and can be rewritten as  

 

E{S{3}} = E{X1{3}} E{X2{3}}E{X3{3}}E{X4{3}} 

 

+E{X1{3}} E{X2{3}} E{X3 3}} (E{X4{2}} +E{X4{1}}) 

+  E{X1{3}}  E{X2{3}} E{X4{3}} (E{X3{2}}+E{X3{1}}) 

+ E{X1{3}}  E{X3{3}} E{X4{3}} (E{X2{2}} +E{X2{1}}) 

+  E{X2{3}} E{X3{3}} E{X4{3}} (E{X1{2}}+E{X1{1}})                                     (16) 

 

It is now possible to compute S{2} via (1c), but we opt for a shortcut by observing that the four instances S{0}, 

S{1}, S{2}, and S{3} form an orthonormal set, that is, for every input configuration one and only one of these 

four values is 1 while each of the remaining three is 0. In particular, we obtain the expectation of S{2} as  

 

E{S{2}} = 1— (E{S{0}}+  E{S{1}}+ E{S{3}})                                                  (17) 

 

 

IV. MVKM Construction 
Based on the analysis of Section III, we construct the Multi-Valued Karnaugh Map (MVKM) of Fig. 2. 

This map is the natural map representing our multi-state system, and various variants of it have been published 

before [24-26]. The map variables are the four input four-valued variables Xi{1 ≤ 𝑖 ≤ 4}. Since each of these 

variables can take four values independently of the other variables, the number of map cells is 4
4
 = 256. A map 

entry is one of the four values {0, 1, 2, 3} that the output variable takes. The entry of a map cell is chosen as one 

of the values 0, 1, and 3 according to equations (5), (9), and (15), respectively. The remaining cells are entered 

with the value 2. 

The MVKM of Fig.2 might be viewed as a map of the eight binary variables (Zi1,  Zi2),  {1 ≤ 𝑖 ≤
4}. For convenience, these variables are superimposed as alternative map variables in Fig. 2. According to this 

point of view, the number of map cells should be 2
8
, i.e., it remains equal to 256. The number of map sells is 

large, indeed, This constitutes a particular source of difficulty, which is partially remedied through the use of a 

conveniently regular and scalable map structure [27-29]. The map is very convenient for decomposing its 

function into sub-functions, i.e., for embedding an expansion tree or a decision diagram for this function [15, 16, 

23, 30]. 

 

Coherence of the present multi-state system is illustrated neatly by the MVKM. In fact, the three properties of 

coherence can be observed from the MVKM (reproduced in Fig.3) as follows: 

1. Causality is evident from the map since the entry of the shaded all-0 cell is 0 (indicating that S(0, 0, 0, 

0) = 0 ) and the entry of the dotted all-3 cell is 3 (indicating that S (3, 3, 3, 3) = 3 ). 

 

2. Monotonicity with represent to component 1 can be observed by dividing the map into four quarters 

each consisting of four map columns. These four quarters represent the regions of  X1 = 0,  X1 = 1, X1 = 3, and 

X1 = 2. The map in Fig. 3 is divided vertically by a primary mirror into two halves: a lower half comprised of 

the regions X1 = 0  and  X1 = 1, and a higher half comprised of the regions X1 = 2  and  X1 = 3. The entry of any 

cell in the higher region is equal to or greater than the entry of its lower-region image with respect to the 

primary mirror. This means that when the values of  X2 , X3 and  X4 are fixed  

S | X1 = 3 ≥ S | X1 = 1                                                                (18a)                             

 

S | X1 = 2  ≥ S | X1 = 0                                                                (18b) 
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Each of the two halves of the map is divided into two quarters by a secondary mirror. The entry of a cell in the 

quarter of {X1 = 0} is equal to or greater than the entry of its image (w.r.t. the left secondary image mirror) in 

the {X1 = 0} quarter. This means that for fixed values of X2 , X3 ,  and X4  ,  one has  

 

 S | X1 = 1  ≥  S | X1 = 0                                                                (18c)                             

likewise, the entry of a cell in the quarter {X1 = 3} is equal to or greater than the entry of its image (w.r.t. the 

right secondary image mirror) in the quarter{X1 = 2}. This means that for fixed values of   X2 , X3 ,  and X4   we 

have  

          S | X1 = 3   ≥  S | X1 = 2                                                                 (18d)     

Combining equations (18a) – (18d), we obtain for fixed values of  X2 , X3 ,  and X4  , the following assertion that 

the output S is non-decreasing when  X1  increases  

S | X1 = 3   ≥   S | X1 = 2  ≥   S | X1 = 1   ≥  S | X1 = 0                                             (19) 

 

The MVKM can be similarly used to demonstrate monotonicity w.r.t. each of the remaining  components 2, 3, 

and 4.  

3. Relevancy of component 1 is evident from the fact that there are cases in which the inequalities in (19) 

are strict ones. For example, the map row labelled 31 ( for X3 = 3 and  X4 = 1) and coloured in yellow has two 

starred cells for  X2 = 3   in which  

 

S | X1 = 3   >  S | X1 = 2                                                                    (20a)   

with two double-starred cells for  X2 = 1   in which    

S | X1 =2  >  S | X1 =1                                                                        (20b)   

and three pairs of cells with the same X2 values for which  

S | X1 = 1   >  S | X1 = 0                                                                      (20c)   

The map can be used in a similar fashion to demonstrate relevancy of each of the components 2, 3, and 4. 

 

V. Comparison with Previous Work 
The problem handled herein was solved by multi-state techniques by Tian et al. [1]. And Mo. et al. [2], and was 

also solved via techniques of multi-valued logic by Rushdi [3], and via switching-algebraic techniques by 

Rushdi and Al-Amoudi [4]. In all cases the following input was used  

 

{E{Xi{j}}}=[

. 050 . 0950

. 050 . 0950
. 0684 . 7866
. 0684 . 7866

. 030 . 0776

. 030 . 0776
. 0446 . 8478
. 0446 . 8478

]     (1≤ i ≤ 4 , 0 ≤ j ≤ 3)                    (21) 

 

Table 3 compares our results for this specific input with the results of earlier three teams of authors. The four 

sets of results are essentially the same, despite the  existence of differences in precision. We deliberately use an 

exaggerated precision of fifteen significant digits for comparison purposes. 

 

VI. Conclusions 
This paper demonstrated how the reliability of a multi-state system can be analyzed via multi-valued 

logic. Detailed solution for a standard commodity-supply multi-state system was provided, and culminated in a 

MVKM for the multi-state system. The solution obtained was satisfactorily checked against previously reported 

work.  
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Fig. 1. A commodity-supply system that is modeled as a multi-state k-out-of-n: G system (Adapted from Tian et 

al. [1]). 
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Fig. 2. A Multi-Valued Karnaugh Map (MVKM) that might be viewed as  

(a) a map of eight binary variables Zi1, Zi2{1 ≤i ≤ 4}, or   

(b) a map of four four-valued variables Xi{1 ≤  i ≤ 4} 
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Fig. 3. The MVKM in Fig. 2 reproduced to demonstrate coherency properties.  

 

 

 

Table 1a. Defintion of the four-valued input variable Xi, which deteminesthe status of pipeline i (1 ≤ i ≤ 4 ) 

Value of Xi Meaning  

0 Pipeline i does not transmit the commodity to any station. 

1 Pipeline i transmits the commodity to station 1.  
2 Pipeline i transmits the commodity to stations 1 and 2.  
3 Pipeline i transmits the commodity to stations 1, 2, and 3. 

 

Table 1b. Description of of the four-valued output variable S, which detemines system status. 
Value of S Meaning 

0 The system does not meet the commodity demand of any station. 

1 The system meets the commodity demand of  station 1. 

2 The system meets the commodity demand of  stations 1 and 2. 

3 The system meets the commodity demand of any stations 1, 2, and 3. 
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Table 2. Description of the three stations, each as a km-out-of-4: G system 

 
 

 

 

Table 3. Comparison of our results with earlier work 

Expectation of Tian et al.[1] Mo et al.[2] Rushdi [ 3 ] Rushdi & Al-Amoudi [ 4 ] Our results 

S(0) 0.1508 0.150838 0.150837750000 0.150837750000000 0.150837750000000 

S(1) 0.0023 0.002282 0.002282548128 0.002282548128000 0.002282548128000 

S(2) 0.0892 0.089181 0.089180866436 0.089180866435691 0.089180866435691 

S(3) 0.7577 0.757699 0.757698835436 0.757698835436309 0.757698835436309 

Total 1.0000 1.000000 1.000000000000 1.000000000000000 1.000000000000000 

 


